


Mock midterm:

Thursday, October 31st at 15,30- 17,30 in A202 

Midterm:
Thursday, November 7th at 11,30- 13,30 in B106

On Tuesday, November 5th: green time to prepare for the midterm

PART B starts on Wednesday, November 6th 



FROM Biopython’s website:

The Biopython Project is an international 
association of developers of freely available 
Python tools for computational molecular 
biology. 

The goal of Biopython is to make it as easy as 
possible to use Python for bioinformatics by 
creating high-quality, reusable modules and 
classes. 



Blast (Basic logical alignment 
search tool) is a well known tool 
to find similarities between 
biological sequences. It 
compares DNA or protein 
sequences and calculates the 
statistical significance of the 
matches found.

The online version of blast can 
be accessed through the 
Biopython’s 
Bio.Blast.NCBIWWW.qblast() 
function.

It’s basic syntax is the following (first import from Bio.Blast import NCBIWWW):

result_handle = Bio.Blast.NCBIWWW.qblast(blast_program, database, query_str)

blast_program is the program to perform the alignment. The options are blastn, blastp, 
blastx, tblast or tblastx. 

database is the database to search against 

query_str is a string containing the query to search against the database. 

The query can be a sequence or a fasta file entry or an identifier like a GI number 
(NCIBI’s sequence identification number). 

Among the others, some optional parameters are the output format (format_type that by 
default is “XML” which is the most stable output format but results can be stored also as text 
with “Text”). It is also possible to specify an expectation value cut-off to filter out alignments 
expect (the e-value threshold, default value is 10.0).

https://www.ncbi.nlm.nih.gov/pubmed/2231712
https://www.ncbi.nlm.nih.gov/pubmed/2231712


Blast (Basic logical alignment 
search tool) is a well known 
tool to find similarities 
between biological 
sequences. It compares DNA 
or protein sequences and 
calculates the statistical 
significance of the matches 
found.

The online version of blast 
can be accessed through the 
Biopython’s 
Bio.Blast.NCBIWWW.qblast() 
function.

https://www.ncbi.nlm.nih.gov/pubmed/2231712
https://www.ncbi.nlm.nih.gov/pubmed/2231712


Blast (Basic logical alignment search 
tool) is a well known tool to find 
similarities between biological 
sequences. It compares DNA or 
protein sequences and calculates the 
statistical significance of the matches 
found.

The online version of blast can be 
accessed through the Biopython’s 
Bio.Blast.NCBIWWW.qblast() function. It is also possible to specify some optional parameters in entrez_query for 

example we can limit the search to specific organisms with: 
entrez_query='"Malus Domestica" [Organism]'.

NOTE: qblast returns a result_handle not the results!

The query string can be obtained by reading a fasta file into a string 

https://www.ncbi.nlm.nih.gov/pubmed/2231712
https://www.ncbi.nlm.nih.gov/pubmed/2231712


Query results can be 
parsed with the 
methods of the 
module 
Bio.Blast.NCBIXML

Single result

   or (multiple results)



We can save the 
entries in a file



A BLAST output file 
can be read by opening 
the file to get the 
handler and then parse 
it with the method 
parse 

This returns an iteratort to Bio.Blast.Record.Blast objects that hold the 
results of the alignment 



The Bio.Blast.Record.Blast 
class holds the results of the 
alignment. 

It is composed of three types 
of information:

query
Descriptions
Alignments



The Bio.Blast.Record.Blast 
class holds the results of the 
alignment. 

It is composed of three types 
of information:

query
Descriptions
Alignments



Example:Let’s blast the serum albumin sequence (gi 
number 23307792) to the human genome and report 
all the information. (warning might take a while to run!)

https://www.ncbi.nlm.nih.gov/nuccore/AF542069.1


Example:Let’s blast the serum albumin sequence (gi 
number 23307792) to the human genome and report 
all the information. (warning might take a while to run!)

https://www.ncbi.nlm.nih.gov/nuccore/AF542069.1




Biopython provides a module 
(Bio.Entrez) to pull data off 
resources like PubMed or GenBank, 
and other repositories 
programmatically through Entrez.

http://www.ncbi.nlm.nih.gov/Entrez/


As a list:
['pubmed', 'protein', 'nuccore', 'ipg', 'nucleotide', 'structure', 
'sparcle', 'genome', 'annotinfo', 'assembly', 'bioproject', 
'biosample', 'blastdbinfo', 'books', 'cdd', 'clinvar', 'gap', 
'gapplus', 'grasp', 'dbvar', 'gene', 'gds', 'geoprofiles', 
'homologene', 'medgen', 'mesh', 'ncbisearch', 'nlmcatalog', 
'omim', 'orgtrack', 'pmc', 'popset', 'probe', 'proteinclusters', 
'pcassay', 'biosystems', 'pccompound', 'pcsubstance', 
'seqannot', 'snp', 'sra', 'taxonomy', 'biocollections', 'gtr']

Entries count: 9,263,428
LastUpdate: 26/10/2019 2:10
Description: SRA Database





PDB is a database of structural 
information of 3D shapes of 
proteins, nucleic acids, and 
complex assemblies. The 
database currently contains more 
than 157,000 total structures.

https://www.rcsb.org/



First of all:

from Bio.PDB import *

Then it is possible to 
download a structure directly 
from PDB by using a PDBList 
object that features a function 
called download_pdb_files 



Once the structures are available 
locally, one can start parsing 
them to do something useful. 
Parsing can be done through the 
MMCIFParser object



A Structure consists 
of a collection of one 
or more Model 
(different 3D 
conformations of the 
very same structure) 
that is a collection of 
Chain that is a 
collection of Residues 
that is a collection of 
Atoms



from Bio.PDB import *

parser = MMCIFParser(QUIET=True) #To disable warnings

filename = "file_samples/3c2l.cif"

structure = parser.get_structure("3c2l", filename)

for model in structure.get_models():

    print("model", model, "has {} chains".format(len(model)))

    for chain in model:

        print(" - chain ", chain, "has {} residues".format(len(chain)))

        for residue in chain:

            print ("      - residue", residue.get_resname(), "has {} 

atoms".format(len(residue)))

            for atom in residue:

                x,y,z = atom.get_coord()

                print("        - atom:", atom.get_name(), "x: {} y:{} z:{}".format(x,y,z))





Check:

Blast.Record.Blast
Bio.Entrez
PDB.Structure




